αRD3127

High Frequency NPN Transistor Array

General Description

The α RD3127 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Each of the completely isolated transistors exhibits low 1/f noise and a value of f_T in excess of 1GHz, making the α RD3127 useful from DC to 500MHz. Access is provided to each of the terminals for the individual transistors and a separate substrate connection has been provided for maximum application flexibility. The monolithic construction of the α RD3127 provides close electrical and thermal matching of the five transistors.

Features

- Gain Bandwidth Product (fr)>1GHz
- Power Gain 30dB (Typ) at 100MHz
- Noise Figure. 3.5dB (Typ) at 100MHz
- Five Independent Transistors on a Common Substrate
- Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- VHF Amplifiers
- Multifunction Combinations RF/Mixer/Oscillator
- Sense Amplifiers
- Synchronous Detectors
- VHF Mixers
- IF Converter
- IF Amplifiers
- Synthesizers
- Cascade Amplifiers

Ordering information

Table 1

Part	Temp. range, °C	Package	Package drawing	Burn-In case temp, °C	Burn-In time, hrs	
αRD3127	-55 to +125	16-pin plastic DIP	Figure1	+125	240	

αRD3127

Absolute maximum ratings

Thermal Information

The following ratings apply for each transistor	in the device
Callester to Envitter Valters Vera	1537

Conector-to-Ennitier voltage, vceo	IJV
Collector-to-Base Voltage, VCBO	20V
Collector-to-Substrate Voltage, VCIO (Note 1)	$\dots 20V$
Collector Current, Ic	. 20mA

Operating Conditions

Temperature Range -55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The collector of each transistor of the α RD3127 is isolated from the substrate by an integral diode. The substrate (Terminal 5) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications TA = 25°C

Table 2

PARAMETER	TEST CONDITIONS		MIN	ТҮР	MAX	UNITS					
DC CHARACTERISTICS (For Each Transistor)											
Collector-to-Base Breakdown Voltage	$I_{\rm C} = 10 \mu A, I_{\rm E} = 0$			32	-	V					
Collector-to-Emitter Breakdown Voltage	$I_{\rm C} = 1 \text{mA}, I_{\rm B} = 0$			24	-	V					
Collector-to-Substrate Breakdown-	$I_{C1} = 10\mu A, I_B = 0, I_E = 0$		20	60	-	V					
Voltage											
Emitter-to-Base Breakdown Voltage	$I_{\rm E} = 10 \mu A, I_{\rm C} = 0$		4	5.7	-	V					
(Note 3)	ote 3)										
Collector-Cutoff-Current	$V_{CE} = 10V$, $I_B = 0$		-	-	0.5	μΑ					
Collector-Cutoff-Current	$V_{CB} = 10V, I_E = 0$		-	-	40	nA					
DC Forward-Current Transfer Ratio	$V_{CE} = 6V$	$I_C = 5mA$	35	88	-						
		$I_C = 1mA$	40	90	-						
		$I_C = 0.1 mA$	35	85	-						
Base-to-Emitter Voltage	$V_{CE} = 6V$	$I_C = 5mA$	0.71	0.81	0.91	V					
		$I_C = 1 m A$	0.66	0.76	0.86	V					
		$I_C = 0.1 mA$	0.60	0.70	0.80	V					
Collector-to-Emitter Saturation Voltage	ge $I_C = 10 \text{mA}, I_B = 1 \text{mA}$		-	0.26	0.50	V					
Magnitude of Difference in V _{BE}	erence in V_{BE} Q ₁ and Q ₂ Matched		-	0.5	5	mV					
Magnitude of Difference in I_B $V_{CE} = 6V, I_C = 1mA$		-	0.2	3	μA						
DYNAMIC CHARACTERISTICS											
Noise Figure	$f = 100 kHz, R_S = 500\Omega, I_C = 1mA$			2.2	-	dB					
Gain-Bandwidth Product	$V_{CE} = 6V, I_C = 5mA$			1.15	-	GHz					
Voltage Gain	$V_{CE} = 6V$, f = 10MHz, R _L = 1k Ω , I _C = 1mA			28	_	dB					
Power Gain	Cascode Configuration			30	_	dB					
Noise Figure	$f = 100MHz, V + = 12V, I_C = 1mA$		-	3.5	-	dB					

NOTE:

3. When used as a zener for reference voltage, the device must not be subjected to more than 0.1mJ of energy from any possible capacitance or electrostatic discharge in order to prevent degradation of the junction. Maximum operating zener current should be less than 10mA.

αRD3127 (PDIP) TOP VIEW

Physical Dimensions

Pinout

Figure 1

αRD3127

All RD ALFA Microelectronics semiconductor products are manufactured, assembled and tested under ISO9001 quality systems certification.

RD ALFA Microelectronics products are sold by description only. RD ALFA Microelectronics reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by RD ALFA Microelectronics is believed to be accurate and reliable. However, no responsibility is assumed by RD ALFA Microelectronics or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RD ALFA Microelectronics or its subsidiaries.

For information regarding RD ALFA Microelectronics and its products, see web site http://www.rdalfa.eu

