

### αRD3102 Dual Higl

# Dual High Frequency Differential Amplifier For Low Power Applications Up to 500MHz

## **General Description**

The  $\alpha$ RD3102 consists of two independent differential amplifiers with associated constant current transistors on a common monolithic substrate. The six transistors which comprise the amplifiers are general purpose devices which exhibit low 1/f noise and a value of  $f_T$  in excess of 1GHz. These features make the  $\alpha$ RD3102 useful from DC to 500MHz. Bias and load resistors have been omitted to provide maximum application flexibility. The monolithic construction of the  $\alpha$ RD3102 provides close electrical and thermal matching of the amplifiers. This feature makes this device particularly useful in dual channel applications where matched performance of the two channels is required.

The  $\alpha$ RD3102 has a separate substrate connection for greater design flexibility.

### Features

- Power Gain 23dB (Typ)..... 200MHz
- Noise Figure 4.6dB (Typ) ..... 200MHz
- Two Differential Amplifiers on a Common Substrate
- Independently Accessible Inputs and Outputs
- Full Military Temperature Range ...... -55°C to 125°C

### Applications

- VHF Amplifiers
- VHF Mixers
- Multifunction Combinations RF/Mixer/Oscillator;
- **Converter/IF**
- IF Amplifiers (Differential and/or Cascode)
- Product Detectors
- Doubly Balanced Modulators and Demodulators
- Balanced Quadrature Detectors
- Cascade Limiters
- Synchronous Detectors
- Balanced Mixers
- Synthesizers
- Balanced (Push-Pull) Cascode Amplifiers
- Sense Amplifiers

### **Ordering information**

| Table | 1 |
|-------|---|
| LUNIC |   |

| 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    |                             |                    |                          |                      |  |
|-----------------------------------------|--------------------|-----------------------------|--------------------|--------------------------|----------------------|--|
| Part                                    | Temp. range,<br>°C | Package                     | Package<br>drawing | Burn-In<br>case temp, °C | Burn-In<br>time, hrs |  |
| αRD3102                                 | -55 to +125        | 14-pin plastic DIP          | Figure 6           | +125                     | 240                  |  |
| αRD3102                                 | -55 to +125        | 14-lead ceramic<br>flatpack | Figure 7           | +125                     | 240                  |  |



### $\alpha RD3102$

### Pinout





# **Schematic Diagrams**

Figure 2





Substrate

5

12



### αRD3102

### Absolute maximum ratings

#### **Thermal Information**

| Collector-to-Emitter Voltage, V <sub>CEO</sub> 15V      | Thermal Resistance (Typical, Note 2)            | $\theta_{JA}$ (°C/W) |
|---------------------------------------------------------|-------------------------------------------------|----------------------|
| Collector-to-Base Voltage, V <sub>CBO</sub>             | PDIP Package                                    | 110                  |
| Collector-to-Substrate Voltage, $V_{CIO}$ (Note 1). 20V | Ceramic flatpack Package                        | 205                  |
| Emitter-to-Base Voltage, V <sub>EBO</sub> 5V            | Maximum Power Dissipation (Any One Transistor). | 300mW                |
| Collector Current, IC                                   | Maximum Junction Temperature (Plastic Package)  | 150°C                |
|                                                         | Maximum Storage Temperature Range65°C           | to 150°C             |
| <b>Operating Conditions</b>                             | Maximum Lead Temperature (Soldering 10s)        | 260°C                |
| Temperature Range55°C to 125°C                          | C (ceramic flatpack - Lead Tips Only)           |                      |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The collector of each transistor of the  $\alpha$ RD3102 is isolated from the substrate by an integral diode. The substrate (Terminal 9) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

2.  $\theta_{JA}$  is measured with the component mounted on an evaluation PC board in free air.

#### **Electrical Specifications** TA = 25°C

Table 2

| PARAMETER                                          | SYMBOL                     | TEST CO                              | NDITIONS           | MIN | TYP    | MAX | UNITS  |
|----------------------------------------------------|----------------------------|--------------------------------------|--------------------|-----|--------|-----|--------|
| DC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER |                            |                                      |                    |     |        |     |        |
| Input Offset Voltage                               | Vio                        | - 0.25 5                             |                    |     |        | 5.0 | mV     |
| Input Offset Current                               | Ιιο                        | I3 = I9 = 2mA                        |                    | -   | 0.3    | 3.0 | μA     |
| Input Bias Current                                 | IB                         |                                      |                    | -   | 13.5   | 33  | μA     |
| Temperature Coefficient                            | $ \Delta V_{IO} /\Delta T$ |                                      |                    | -   | 1.1    | -   | μV/ °C |
| Magnitude of Input Offset Voltage                  |                            |                                      |                    |     |        |     |        |
| DC CHARACTERISTICS FOR EA                          | CH TRANSI                  | STOR                                 |                    |     |        |     |        |
| DC Forward Base-to-Emitter                         | VBE                        | VCE = 6V, IC = 1mA                   |                    | 674 | 774    | 874 | mV     |
| Voltage                                            |                            |                                      |                    |     |        |     |        |
| Temperature Coefficient of                         | $\Delta V$ BE/ $\Delta T$  | VCE = 6V, IC = 1mA                   |                    | -   | -0.9   | -   | mV/ °C |
| Base-to-Emitter Voltage                            |                            |                                      |                    |     |        |     |        |
| Collector Cutoff Current                           | Ісво                       | VCB = 10V, IE = 0                    |                    | -   | 0.0013 | 100 | nA     |
| Collector-to-Emitter Breakdown                     | V(BR)CEO                   | IC = 1mA, IB = 0                     |                    | 15  | 24     | -   | V      |
| Voltage                                            |                            |                                      |                    |     |        |     |        |
| Collector-to-Base Breakdown                        | V(BR)CBO                   | $IC = 10 \mu A, IE = 0$              |                    | 20  | 60     | -   | V      |
| Voltage                                            |                            |                                      |                    |     |        |     |        |
| Collector-to-Substrate Breakdown                   | V(BR)CIO                   | $IC = 10 \mu A$ , $IB = IE = 0$      |                    | 20  | 60     | -   | V      |
| Voltage                                            |                            |                                      |                    |     |        |     |        |
| Emitter-to-Base Breakdown Voltage                  | V(BR)EBO                   | $IE = 10 \mu A, IC = 0$              |                    | 5   | 7      | -   | V      |
| DYNAMIC CHARACTERISTICS F                          | <b>FOR EACH I</b>          | DIFFERENTIAL AM                      | PLIFIER            |     |        |     |        |
| 1/f Noise Figure (For Single                       | NF                         | f = 100 kHz, Rs = 500                | $\Omega, IC = 1mA$ | -   | 1.5    | -   | dB     |
| Transistor)                                        |                            |                                      |                    |     |        |     |        |
| Gain Bandwidth Product (For Single                 | fT                         | VCE = 6V, IC = 5mA                   |                    | -   | 1.35   | -   | GHz    |
| Transistor)                                        |                            |                                      |                    |     |        |     |        |
| Collector-Base Capacitance                         | Ссв                        | IC = 0,                              | Note 3             | -   | 0.28   | -   | pF     |
|                                                    |                            | VCB = 5V                             | Note 4             | -   | 0.15   | -   | pF     |
| Collector-Substrate Capacitance                    | CCI                        | IC = 0, VCI = 5V                     |                    | -   | 1.65   | -   | pF     |
| Common Mode Rejection Ratio                        | CMRR                       | I3 = I9 = 2mA                        |                    | -   | 100    |     | dB     |
| AGC Range, One Stage                               | AGC                        | Bias Voltage = $-6V$                 |                    | -   | 75     | -   | dB     |
| Voltage Gain, Single-Ended Output                  | A                          | Bias Voltage = $-4.2V$ , f = $10MHz$ |                    | -   | 22     | -   | dB     |



# **Electrical Specifications** TA = 25°C (Continued)

| PARAMETER                        | SYMBOL          | TEST CONDITIONS                                                  |            | MIN | ТҮР           | MAX | UNITS |
|----------------------------------|-----------------|------------------------------------------------------------------|------------|-----|---------------|-----|-------|
| Insertion Power Gain             | G <sub>P</sub>  | $V_{CC} = 12V$ , for                                             | Cascode    | -   | 23            | -   | dB    |
| Noise Figure                     | N <sub>F</sub>  | Cascode Configuration $\bigcirc$ $3 = I9 = 2mA$ . For $\bigcirc$ | Cascode    | -   | 4.6           | -   | dB    |
| Input Admittance                 | Y <sub>11</sub> |                                                                  | Cascode    | -   | 1.5 + j2.45   | -   | mS    |
|                                  |                 | Diff. Amp.Configuration                                          | Diff. Amp. | -   | 0.878 + j1.3  | -   | mS    |
| Reverse Transfer Y <sub>12</sub> | Y <sub>12</sub> | $I_3 = I_9 = 4mA$ (Each                                          | Cascode    | -   | 0.0 - j0.008  | -   | mS    |
| Admittance                       |                 | Collector IC $\approx$ 2mA)                                      | Diff. Amp. | -   | 0.0 - j0.013  | -   | mS    |
| Forward Transfer                 | Y <sub>21</sub> | = 200 MHZ                                                        | Cascode    | -   | 17.9 - j30.7  | -   | mS    |
| Admittance                       |                 |                                                                  | Diff. Amp. | -   | -10.5 + j13   | -   | mS    |
| Output Admittance                | Y <sub>22</sub> |                                                                  | Cascode    | -   | -0.503 - j15  | -   | mS    |
|                                  |                 |                                                                  | Diff. Amp. | -   | 0.071 + j0.62 | -   | mS    |

NOTES:

3. Terminals 1 and 14 or 7 and 8.

4. Terminals 13 and 4 or 6 and 11.



### **Test Circuits**





FIGURE 3. DC characteristics test circuit for  $\alpha$ RD3102

FIGURE 4. AGC range and Voltage Gain test circuit for  $\alpha RD3102$ 



FIGURE 5. 200MHz Cascode Power Gain and Noise figure test circuit



### αRD3102 Figure 6.

**Physical Dimensions** 

14-PIN PLASTIC DIP





 $4.45 \pm 0.13$ 





### αRD3102

All RD ALFA Microelectronics semiconductor products are manufactured, assembled and tested under ISO9001 quality systems certification.

RD ALFA Microelectronics products are sold by description only. RD ALFA Microelectronics reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by RD ALFA Microelectronics is believed to be accurate and reliable. However, no responsibility is assumed by RD ALFA Microelectronics or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RD ALFA Microelectronics or its subsidiaries.

For information regarding RD ALFA Microelectronics and its products, see web site http://www.rdalfa.eu

